初中数学勾股定理常用公式
勾股定理是初中数学重点考查内容,对今后几何的学习也具有举足轻重的作用。下面就和我一起了解一下,供大家参考。
初中数学勾股定理定义
内容:直角三角形两直角边的平方和等于斜边的平方;
表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.
勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。
勾股定理知识点
1.过两点有且只有一条直线。
2.两点之间线段最短。
3.同角或等角的补角相等。
4.同角或等角的余角相等。
5.过一点有且只有一条直线和已知直线垂直。
6.直线外一点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8.如果两条直线都和第三条直线平行,这两条直线也互相平行。
9.同位角相等,两直线平行。
10.内错角相等,两直线平行。
11.同旁内角互补,两直线平行。
勾股定理的逆定理
如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边。
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若,时,以a,b,c为三边的三角形是钝角三角形;若,时,以a,b,c为三边的三角形是锐角三角形;
②定理中a,b,c及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边。
③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。