高等数学极限的证明方法有哪些?

 我来答
轮看殊O
高粉答主

2022-10-24 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:723万
展开全部

主要是在分段处考察,内容:

1、在分段处是否有定义,定义是否连续,如果连续左右极限必然相等。

2、如果没有定义,考察函数的左右极限是否相等,如果相等,为可去间断点,否则,为不可去间断点。

例如间断点为x=a,左极限为lim(△x→0) [f(a-0+△x)-f(a-0)]/△x,用左端的函数计算。

右极限为lim(△x→0) [f(a+0+△x)-f(a+0)]/△x 用a点右边的函数计算。

求极限基本方法有:



1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。



2、无穷大根式减去无穷大根式时,分子有理化。




3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式