函数的可微性与连续性的关系
一、函数可微的判断
1、函数可微的必要条件
若函数在某点可微分,则函数在该点必连续;
若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。
2、函数可微的充分条件
若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
二、多元函数可微的条件
多元函数可微的充分必要条件是f(x,y)在点(x0,y0)的两个偏导数都存在。
扩展资料:
微分的推导
设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。
AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。
得出: 当△x→0时,△y≈dy。
导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。
参考资料来源:百度百科-可微性
2024-11-30 广告
广告 您可能关注的内容 |