已知向量m=(根号3sinx/4,1),向量n=(cosx/4,cos^ x/4) 若向量m*n=1,求cos(2π/3-x)的值

 我来答
新科技17
2022-09-10 · TA获得超过5898个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.6万
展开全部
m.n=1
(√3sin(x/4),1). (cos(x/4),(cos(x/4))^2)=1
√3sin(x/4). (cos(x/4)+ (cos(x/4))^2 =1
(√3/2)sin(x/2) +( cos(x/2) +1) /2=1
((√3/2)sin(x/2)+(1/2)cosx/2) = 1/2
cos(π/3 -x/2) = 1/2
[cos(π/3 -x/2)]^2 = 1/4
(cos(2π/3 -x) +1)/2 = 1/4
cos(2π/3 -x) = -1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式