请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+?

 我来答
大沈他次苹0B
2022-10-14 · TA获得超过7323个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:177万
展开全部
1.不等式等价于xyz(xy(x+y)+yz(y+z)+zx(z+x)) ≥ 2(xy+yz+zx)².
由xyz = x+y+z,进一步等价于(x+y+z)(xy(x+y)+yz(y+z)+zx(z+x)) ≥ 2(xy+yz+zx)².
也即((x+y)+(y+z)+(z+x))(z²(x+y)+x²册纤(y+z)+y²(z+x)) ≥ (z(x+y)+x(y+z)+y(z+x))².
易见这由Cauchy不等式立即得到.
2.由对称性余明,不妨设a ≤ b ≤ c.
则a/(bc+1)+b/(ca+1) ≤ a/(ab+1)+b/(ab+1) = (a+b)/(ab+1) = 1-(1-a)(1-b)/(ab+1) ≤ 1.
又c/(ab+1) ≤ c ≤ 1.
相加即得a/(bc+1)+b/(ca+1)+c/(ab+1) ≤ 2.,4,请教两道不等式证明题:1、州毁仿若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+
请教两道不等式证明题:
1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+(z+x)/y+(x+y)/z大于等于2(1/x+1/y+1/z)^2.
2、已知0小于等于a,b,c小于等于1,求证:a/(bc+1)+b/(ca+1)+c/(ab+1)小于等于2 .
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式