∫√(sin^3 x-sin^5 x)dx 上限π 下限0 求定积分
3个回答
展开全部
∫√(sin^3 x-sin^5 x)dx
=∫√(sin^3 x*cos^2 x) dx
=∫√(sin^3 x)*|cosx| dx
=∫(上限π,下限π/2)-cosx*√(sin^3 x)dx+∫(上限π/2,下限0)cosx*√(sin^3 x)dx
=∫(上限π,下限π/2)-√(sin^3 x)dsinx+∫(上限π/2,下限0)√(sin^3 x)dsinx
=-2/5*(sinx)^(5/2)|(上限π,下限π/2)+2/5*(sinx)^(5/2)|(上限π/2,下限0)
=2/5+2/5
=4/5
=∫√(sin^3 x*cos^2 x) dx
=∫√(sin^3 x)*|cosx| dx
=∫(上限π,下限π/2)-cosx*√(sin^3 x)dx+∫(上限π/2,下限0)cosx*√(sin^3 x)dx
=∫(上限π,下限π/2)-√(sin^3 x)dsinx+∫(上限π/2,下限0)√(sin^3 x)dsinx
=-2/5*(sinx)^(5/2)|(上限π,下限π/2)+2/5*(sinx)^(5/2)|(上限π/2,下限0)
=2/5+2/5
=4/5
展开全部
sin³ x-sin^5x=sin³x(1-sin²x) =sin³xcos²x
当0<x<0.5π时,sinx>0,cosx>0
√(sin³xcos²x)=sinxcosx√sinx
当0.5π<x<π时,sinx>0,cosx<0
√(sin³xcos²x)=-sinxcosx√sinx
sinxcosx√sinx=sin^(1.5)x*cosx
我们知道dsin^(1.5)x=1.5sin^(0.5)xcosxdx=1.5cosx√sinxdx
所以∫sinxcosx√sinxdx=(2/3)*∫sixdsin^(1.5)x
令sinx=t,得到
∫sixdsin^(1.5)x=∫tdt^(1.5)=∫1.5*t^(1.5)dt=(1.5/2.5)t^(2.5)
下略
当0<x<0.5π时,sinx>0,cosx>0
√(sin³xcos²x)=sinxcosx√sinx
当0.5π<x<π时,sinx>0,cosx<0
√(sin³xcos²x)=-sinxcosx√sinx
sinxcosx√sinx=sin^(1.5)x*cosx
我们知道dsin^(1.5)x=1.5sin^(0.5)xcosxdx=1.5cosx√sinxdx
所以∫sinxcosx√sinxdx=(2/3)*∫sixdsin^(1.5)x
令sinx=t,得到
∫sixdsin^(1.5)x=∫tdt^(1.5)=∫1.5*t^(1.5)dt=(1.5/2.5)t^(2.5)
下略
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin³ x-sin^5x=sin³x(1-sin²x) =sin³xcos²x
√(sin³ x-sin^5x)=sin^(3/2)x|cosx|
∫[0,π]√(sin³ x-sin^5x)dx
=∫[0,π/2]sin^(3/2)x cosxdx-∫[π/2,π]sin^(3/2)x cosxdx
=∫[0,π/2]sin^(3/2)x d(sinx)-∫[π/2,π]sin^(3/2)x d(sinx)
=2/5 sin^(5/2)|[0,π/2]-2/5sin^(5/2)|[π/2,π]
=4/5
√(sin³ x-sin^5x)=sin^(3/2)x|cosx|
∫[0,π]√(sin³ x-sin^5x)dx
=∫[0,π/2]sin^(3/2)x cosxdx-∫[π/2,π]sin^(3/2)x cosxdx
=∫[0,π/2]sin^(3/2)x d(sinx)-∫[π/2,π]sin^(3/2)x d(sinx)
=2/5 sin^(5/2)|[0,π/2]-2/5sin^(5/2)|[π/2,π]
=4/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询