关于x的一元二次方程x^2+(2k-3)x+k^2=0有两个不相等的实数根α、β
(1)求k的取值范围我求出来是k≤3/4(2)α+β+αβ=6,求(α-β)^2+3αβ-5的值...
(1)求k的取值范围 我求出来是k≤3/4
(2)α+β+αβ=6,求(α-β)^2+3αβ-5的值 展开
(2)α+β+αβ=6,求(α-β)^2+3αβ-5的值 展开
4个回答
展开全部
本题考查的是一元二次方程根的判别式,根与系数的关系(韦达定理)。
---------------------------------------------------------------
解:∵方程x^2+(2k-3)x+k^2=0有两个不相等的实数根
∴△>0,即:(2k-3)^2-4k^2>0.
解得:k< 3/4.
又 a+b=-(2k-3),ab=k^2, 条件 a+b+ab=6 可化为:
-(2k-3)+k^2=6,整理为:k^2-2k-3=0
∴k1=3(不合题意,舍去),k2=-1
∴k=-1.∴a+b=5,ab=1.
∴(a-b)^2+3ab-5=(a+b)^2-ab-5=19
---------------------------------------------------------------
解:∵方程x^2+(2k-3)x+k^2=0有两个不相等的实数根
∴△>0,即:(2k-3)^2-4k^2>0.
解得:k< 3/4.
又 a+b=-(2k-3),ab=k^2, 条件 a+b+ab=6 可化为:
-(2k-3)+k^2=6,整理为:k^2-2k-3=0
∴k1=3(不合题意,舍去),k2=-1
∴k=-1.∴a+b=5,ab=1.
∴(a-b)^2+3ab-5=(a+b)^2-ab-5=19
展开全部
1、
你做得对
2、
韦达定理
α+β=-(2k-3)
αβ=k²
所以-2k+3+k²=6
k²-2k-3=0
(k-3)(k+1)=0
k≤3/4
所以k=-1
原式=[(α+β)²-4αβ]+3αβ-5
=(α+β)²-αβ-5
=(2k-3)²-k²-5
=25-1-5
=19
你做得对
2、
韦达定理
α+β=-(2k-3)
αβ=k²
所以-2k+3+k²=6
k²-2k-3=0
(k-3)(k+1)=0
k≤3/4
所以k=-1
原式=[(α+β)²-4αβ]+3αβ-5
=(α+β)²-αβ-5
=(2k-3)²-k²-5
=25-1-5
=19
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
姥姥的,我做错了···5555 楼上对
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
(1)若方程有两个相异实根,则△>0,即:
(2k-3)^2-4k^2>0
解之如下:
4k^2-12k+9-4k^2>0
9-12k>0
k<3/4
(2)若α+β+αβ=6,即有:
3-2k+k^2=6
(k-1)^2=4
解得k=-1.(k=3不满足k<3/4的条件,舍去)
(α-β)^2+3αβ-5
=(α+β)^2-αβ-5
=(2k-3)^2-k^2-5
=4k^2-12k+9-k^2-5
=3k^2-12k+4
将k=-1代入上式,得:
3k^2-12k+4
=3+12+4
=19
即(α-β)^2+3αβ-5=19。
(1)若方程有两个相异实根,则△>0,即:
(2k-3)^2-4k^2>0
解之如下:
4k^2-12k+9-4k^2>0
9-12k>0
k<3/4
(2)若α+β+αβ=6,即有:
3-2k+k^2=6
(k-1)^2=4
解得k=-1.(k=3不满足k<3/4的条件,舍去)
(α-β)^2+3αβ-5
=(α+β)^2-αβ-5
=(2k-3)^2-k^2-5
=4k^2-12k+9-k^2-5
=3k^2-12k+4
将k=-1代入上式,得:
3k^2-12k+4
=3+12+4
=19
即(α-β)^2+3αβ-5=19。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |