1个回答
展开全部
1、
(1)、根据题意求得A(-3,0) B(1,0) C(0,√3)
设:过A,B,C三点的二次函数解析式为y=ax²+bx+c.
将A,B,C三点坐标带入解析式得方程组,再解这个方程组得:
a=-√3/3, b=-2√3/3,c=√3.
所以:过A,B,C三点的二次函数解析式为y=-[(2√3)x²/3]-[(2√3)x/3]+√3
(2)
设OA,OB的中点分别为M,N.
则:△FNB是等边三角形,
所以:F点到AB的距离为(1/4)OB√3=(1/4)*1*√3=(√3)/4
F点的横坐标为(3/4)OB=(3/4)*1=3/4
同理:△EMO也是等边三角形。
所以:E点的纵坐标为(1/4)OA√3=(1/4)*3=3(√3)/4
E点的横坐标为(1/4)OA=3/4
所以:根据两点式可求出EF的方程。(你自己求一下)
2、提示:
(1)、将A,B,C三点坐标带入抛物线解析式得三元一次方程组,解之求出a,b,c值,代入抛物线解析式即可。
(2)、根据A,B,C三点坐标求出直线AC,AB的方程和线段AC,AB的中点坐标,从而求出线段AC,AB的垂直平分线方程,解这两个方程组成的方程组即可求出M的坐标。于是根据A,M两点坐标求出AM的方程。
(3)、存在。
根据直线AC的方程和M点的坐标,求出过M点且平行AC的直线方程。
解这个直线方程与抛物线方程组成的方程组,即可求出P点的坐标。
(1)、根据题意求得A(-3,0) B(1,0) C(0,√3)
设:过A,B,C三点的二次函数解析式为y=ax²+bx+c.
将A,B,C三点坐标带入解析式得方程组,再解这个方程组得:
a=-√3/3, b=-2√3/3,c=√3.
所以:过A,B,C三点的二次函数解析式为y=-[(2√3)x²/3]-[(2√3)x/3]+√3
(2)
设OA,OB的中点分别为M,N.
则:△FNB是等边三角形,
所以:F点到AB的距离为(1/4)OB√3=(1/4)*1*√3=(√3)/4
F点的横坐标为(3/4)OB=(3/4)*1=3/4
同理:△EMO也是等边三角形。
所以:E点的纵坐标为(1/4)OA√3=(1/4)*3=3(√3)/4
E点的横坐标为(1/4)OA=3/4
所以:根据两点式可求出EF的方程。(你自己求一下)
2、提示:
(1)、将A,B,C三点坐标带入抛物线解析式得三元一次方程组,解之求出a,b,c值,代入抛物线解析式即可。
(2)、根据A,B,C三点坐标求出直线AC,AB的方程和线段AC,AB的中点坐标,从而求出线段AC,AB的垂直平分线方程,解这两个方程组成的方程组即可求出M的坐标。于是根据A,M两点坐标求出AM的方程。
(3)、存在。
根据直线AC的方程和M点的坐标,求出过M点且平行AC的直线方程。
解这个直线方程与抛物线方程组成的方程组,即可求出P点的坐标。
东莞大凡
2024-08-07 广告
2024-08-07 广告
作为东莞市大凡光学科技有限公司的一员,我们深知Matlab圆点标定板在相机标定中的重要性。该标定板通过均匀分布的圆点,帮助精确计算相机参数,优化成像效果。Matlab强大的编程功能,使得我们能够灵活设计标定板,调整圆点大小、数量和分布,以满...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询