二次函数的性质有那些
3个回答
展开全部
①一般式
y=ax^2+bx+c(a,b,c为常数,a≠0)
②顶点式
[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k(a,h,k为常数,a≠0)
③交点式
[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)(a,x1,x2为常数,a≠0)
抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0,〔即b=0〕时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=〔4ac-b^2〕/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
7.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[k,正无穷)
奇偶性:非奇非偶 (当且仅当b=0时,函数解析式为f(x)=ax^2+c, 此时为偶函数)
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0,a、b、c为常数。
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b+√Δ]/2a,0)和([-b-√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[配方式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
y=ax^2+bx+c(a,b,c为常数,a≠0)
②顶点式
[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k(a,h,k为常数,a≠0)
③交点式
[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)(a,x1,x2为常数,a≠0)
抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0,〔即b=0〕时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=〔4ac-b^2〕/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
7.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[k,正无穷)
奇偶性:非奇非偶 (当且仅当b=0时,函数解析式为f(x)=ax^2+c, 此时为偶函数)
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0,a、b、c为常数。
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b+√Δ]/2a,0)和([-b-√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[配方式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
2013-12-14
展开全部
一般地,自变量x和因变量y之间存在如下关系:
一般式:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
特别地,二次函数(以下称函数)y=ax^2+bx+c(a≠0),
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0(a≠0)
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
顶点式:y=a(x-h)^2+k(a≠0,a、h、k为常数)
交点式(与x轴):y=a(x-x1)(x-x2)(a≠0,x1、x2为常数)
一般式:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
特别地,二次函数(以下称函数)y=ax^2+bx+c(a≠0),
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0(a≠0)
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
顶点式:y=a(x-h)^2+k(a≠0,a、h、k为常数)
交点式(与x轴):y=a(x-x1)(x-x2)(a≠0,x1、x2为常数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
InputBox
一般式:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
一般式:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询