求高等数学大神解答7至12题。我可以每道题都给你分。
5个回答
展开全部
都是基本题目啊。
7. 分部积分,∫arcsinxdx = xarcsinx-∫xdx/√(1-x^2)
= xarcsinx+(1/2)∫d(1-x^2)/√(1-x^2) = xarcsinx+√(1-x^2)+C.
8. 令 t=x^(1/3), 则 x=t^3。∫e^[x^(1/3)]dx = ∫e^t*3t^2dt
= 3∫t^2de^t = 3t^2*e^t-3∫2te^tdt = 3t^2*e^t-6∫tde^t
= 3t^2*e^t-6te^t+6∫e^tdt = 3t^2*e^t-6te^t+6e^t+C
= [3x^(2/3)-6x^(1/3)+6]e^(1/3)+C.
9. 分部积分,I =∫cos(lnx)dx = xcos(lnx)+∫[xsin(lnx)/x]dx
= xcos(lnx)+∫sin(lnx)dx = xcos(lnx)+xsin(lnx)-∫[xcos(lnx)/x]dx
= xcos(lnx)+xsin(lnx)-I,
解得 I= (x/2)[cos(lnx)+sin(lnx)]+C.
10. ∫x(tanx)^2dx = ∫x[(secx)^2-1]dx =∫xdtanx-∫xdx
= xtanx-∫tanxdx-x^2/2 = xtanx+ln|cosx|-x^2/2+C.
11. ∫cos√xdx = ∫2√xcos√xd√x =∫2√xdsin√x
= 2√xsin√x-2∫sin√xd√x = 2√xsin√x+2cos√x+C.
12. ∫(lnx/x)^2dx =∫(lnx)^2/x^2dx = -∫(lnx)^2d(1/x)
= -(lnx)^2/x+∫(1/x)(2lnx)(1/x)dx = -(lnx)^2/x+2∫lnx/x^2dx
= -(lnx)^2/x-2∫lnxd(1/x) = -(lnx)^2/x-2lnx/x+2∫dx/x^2
= -(lnx)^2/x-2lnx/x-2/x+C.
7. 分部积分,∫arcsinxdx = xarcsinx-∫xdx/√(1-x^2)
= xarcsinx+(1/2)∫d(1-x^2)/√(1-x^2) = xarcsinx+√(1-x^2)+C.
8. 令 t=x^(1/3), 则 x=t^3。∫e^[x^(1/3)]dx = ∫e^t*3t^2dt
= 3∫t^2de^t = 3t^2*e^t-3∫2te^tdt = 3t^2*e^t-6∫tde^t
= 3t^2*e^t-6te^t+6∫e^tdt = 3t^2*e^t-6te^t+6e^t+C
= [3x^(2/3)-6x^(1/3)+6]e^(1/3)+C.
9. 分部积分,I =∫cos(lnx)dx = xcos(lnx)+∫[xsin(lnx)/x]dx
= xcos(lnx)+∫sin(lnx)dx = xcos(lnx)+xsin(lnx)-∫[xcos(lnx)/x]dx
= xcos(lnx)+xsin(lnx)-I,
解得 I= (x/2)[cos(lnx)+sin(lnx)]+C.
10. ∫x(tanx)^2dx = ∫x[(secx)^2-1]dx =∫xdtanx-∫xdx
= xtanx-∫tanxdx-x^2/2 = xtanx+ln|cosx|-x^2/2+C.
11. ∫cos√xdx = ∫2√xcos√xd√x =∫2√xdsin√x
= 2√xsin√x-2∫sin√xd√x = 2√xsin√x+2cos√x+C.
12. ∫(lnx/x)^2dx =∫(lnx)^2/x^2dx = -∫(lnx)^2d(1/x)
= -(lnx)^2/x+∫(1/x)(2lnx)(1/x)dx = -(lnx)^2/x+2∫lnx/x^2dx
= -(lnx)^2/x-2∫lnxd(1/x) = -(lnx)^2/x-2lnx/x+2∫dx/x^2
= -(lnx)^2/x-2lnx/x-2/x+C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你是哪学校的?我们老师也说了过口诀“反对幂指三”。
追问
中国石油大学
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询