已知等比数列an满足a2-a3的绝对值等于10
1个回答
2014-06-10 · 知道合伙人软件行家
关注
展开全部
已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125
(1)求数列{an}的通项公式
(2)是否存在正整数m,使得1/a1+1/a2+...+1/an>=1?若存在,求m的最小值;若不存在,说明理由
a(n)=aq^(n-1),
125 = a(1)a(2)a(3)=a^3q^[0+1+2]=a^3q^3, 5 = aq = a(2).
10 = |a(2) - a(3)|, a(3) = 15, 或,a(3) = -5.
a(3)=15时,q = a(3)/a(2)=3, a = 5/q = 5/3. a(n) = (5/3)3^(n-1) = 5*3^(n-2),
a(3)=-5时,q = a(3)/a(2)=-1, a= 5/q = -5, a(n) = -5(-1)^(n-1) = 5*(-1)^n.
a(n) = (5/3)3^(n-1)时,1/a(n) = (3/5)(1/3)^(n-1),
s(n)=1/a(1)+1/a(2)+...+1/a(n)
= (3/5)[1+1/3+...+(1/3)^(n-1)]
= (3/5)[1 - (1/3)^n]/(1-1/3)
= (9/10) - (9/10)(1/3)^n,
s(n)单调递增,9/10 > s(n) >= s(1) = 9/10 - 3/10 = 3/5.
不存在正整数m存在,使得 s(m) >= 1, 因为,对任意正整数m,都有 s(m) < 9/10 <1.
a(n) = -5(-1)^(n-1)时,1/a(n) = (-1/5)(-1)^(n-1),
s(n) = 1/a(1)+1/a(2)+...+1/a(n)
= (-1/5)[1 + (-1) + ... + (-1)^(n-1)]
= (-1/5)[1-(-1)^n]/[1-(-1)]
= (-1/10)[1-(-1)^n]
= -1/10 + (-1)^n/10,
s(2n-1) = -1/10 + (-1)^(2n-1)/10 = -1/5.
s(2n) = -1/10 + (-1)^(2n)/10 = 0.
同样,不存在正整数m,使得s(m) >= 1. 因为,对任意正整数m,都有s(m)<=0<1.
(1)求数列{an}的通项公式
(2)是否存在正整数m,使得1/a1+1/a2+...+1/an>=1?若存在,求m的最小值;若不存在,说明理由
a(n)=aq^(n-1),
125 = a(1)a(2)a(3)=a^3q^[0+1+2]=a^3q^3, 5 = aq = a(2).
10 = |a(2) - a(3)|, a(3) = 15, 或,a(3) = -5.
a(3)=15时,q = a(3)/a(2)=3, a = 5/q = 5/3. a(n) = (5/3)3^(n-1) = 5*3^(n-2),
a(3)=-5时,q = a(3)/a(2)=-1, a= 5/q = -5, a(n) = -5(-1)^(n-1) = 5*(-1)^n.
a(n) = (5/3)3^(n-1)时,1/a(n) = (3/5)(1/3)^(n-1),
s(n)=1/a(1)+1/a(2)+...+1/a(n)
= (3/5)[1+1/3+...+(1/3)^(n-1)]
= (3/5)[1 - (1/3)^n]/(1-1/3)
= (9/10) - (9/10)(1/3)^n,
s(n)单调递增,9/10 > s(n) >= s(1) = 9/10 - 3/10 = 3/5.
不存在正整数m存在,使得 s(m) >= 1, 因为,对任意正整数m,都有 s(m) < 9/10 <1.
a(n) = -5(-1)^(n-1)时,1/a(n) = (-1/5)(-1)^(n-1),
s(n) = 1/a(1)+1/a(2)+...+1/a(n)
= (-1/5)[1 + (-1) + ... + (-1)^(n-1)]
= (-1/5)[1-(-1)^n]/[1-(-1)]
= (-1/10)[1-(-1)^n]
= -1/10 + (-1)^n/10,
s(2n-1) = -1/10 + (-1)^(2n-1)/10 = -1/5.
s(2n) = -1/10 + (-1)^(2n)/10 = 0.
同样,不存在正整数m,使得s(m) >= 1. 因为,对任意正整数m,都有s(m)<=0<1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询