零点定理 说的是解题还是什么

零点定理电影说的是什么... 零点定理 电影说的是什么 展开
 我来答
若以下回答无法解决问题,邀请你更新回答
百度网友e768659f
推荐于2016-12-01 · 知道合伙人教育行家
百度网友e768659f
知道合伙人教育行家
采纳数:7168 获赞数:114014
98年参加工作,本科学历,帮助身边所有人,是我最大追求!

向TA提问 私信TA
展开全部
在一个“奥威尔式”(Orwellian)的受严格统治而失去人性的社会,国家的上层建筑为了监视人民控制思想,将眼线散布在生活、工作场所,甚至网络上。克里斯托弗·瓦尔兹饰演一名性格古怪的计算机天才Qohen Leth,然而生活本来按部就班的他注意力却渐渐为一系列“虚拟性骚扰”所分散,并且“领导人”叛逆的儿子也让他头疼不已。为了搞清楚这些问题,智慧超群的他开始实施一个神秘的计划……
设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0。
证明:不妨设f(a)<0,f(b)>0.令
E={x|f(x)<0,x∈[a,b]}.
由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理,抛物线存在ξ=supE∈[a,b].
下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a,b).).事实上,
(i)若f(ξ)<0,则ξ∈[a,b).由函数连续的局部保号性知
存在δ>0,对x1∈(ξ,ξ+δ):f(x)<0→存在x1∈E:x1>supE,
这与supE为E的上界矛盾;
(ii)若f(ξ)>0,则ξ∈(a,b].仍由函数连续的局部保号性知
存在δ>0,对x1∈(ξ-δ,ξ):f(x)>0→存在x1为E的一个上界,且x1<ξ,
这又与supE为E的最小上界矛盾。
综合(i)(ii),即推得f(ξ)=0。
我们还可以利用闭区间套定理来证明零点定理。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式