如图所示,∠ADC=∠ABC,∠1+∠2=180°,DA是∠FDB的平分线,说明BC是∠DBE的平分线
如图所示,∠ADC=∠ABC,∠1+∠2=180°,DA是∠FDB的平分线,说明BC是∠DBE的平分线....
如图所示,∠ADC=∠ABC,∠1+∠2=180°,DA是∠FDB的平分线,说明BC是∠DBE的平分线.
展开
1个回答
展开全部
解答:证明:∵∠1+∠2=180°(已知),
∠2+∠7=180°(邻补角定义),
∴∠1=∠7(同角的补角相等).
∴AE∥CF(同位角相等,两直线平行).
∴∠ABC+∠C=180°(两直线平行,同旁内角互补).
又∵∠ADC=∠ABC(已知),
∴∠ADC+∠C=180°,
∴AD∥BC(同旁内角互补,两直线平行).
∴∠6=∠C,∠4=∠5(两直线平行,同位角相等,内错角相等).
又∵∠3=∠C(两直线平行,内错角相等),
∴∠3=∠6,
又∵DA是∠BDF的平分线,
∴∠5=∠6,
∴∠3=∠4,
∴BC是∠DBE的平分线.
∠2+∠7=180°(邻补角定义),
∴∠1=∠7(同角的补角相等).
∴AE∥CF(同位角相等,两直线平行).
∴∠ABC+∠C=180°(两直线平行,同旁内角互补).
又∵∠ADC=∠ABC(已知),
∴∠ADC+∠C=180°,
∴AD∥BC(同旁内角互补,两直线平行).
∴∠6=∠C,∠4=∠5(两直线平行,同位角相等,内错角相等).
又∵∠3=∠C(两直线平行,内错角相等),
∴∠3=∠6,
又∵DA是∠BDF的平分线,
∴∠5=∠6,
∴∠3=∠4,
∴BC是∠DBE的平分线.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询