(2012?厦门)已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分

(2012?厦门)已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若PE=3... (2012?厦门)已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若PE=3,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+32-4,求BC的长. 展开
 我来答
葬魂v5o霑
推荐于2016-12-01 · 超过56用户采纳过TA的回答
知道答主
回答量:169
采纳率:100%
帮助的人:129万
展开全部
解:(1)如图,连接PO,∵PE⊥AC,PE=
3
,EO=1,
∴tan∠EPO=
EO
PE
=
3
3

∴∠EPO=30°,
∵PE⊥AC,PF⊥BD,
∴∠PEO=∠PFO=90°,
在Rt△PEO和Rt△PFO中,
PO=PO
PE=PF

∴Rt△PEO≌Rt△PFO(HL),
∴∠FPO=∠EPO=30°,
∴∠EPF=∠FPO+∠EPO=30°+30°=60°;

(2)如图,∵点P是AD的中点,点F是DO的中点,
∴PF为△AOD中位线,
∴PF∥AO,且PF=
1
2
AO,
∵PF⊥BD,
∴∠PFD=90°,
∴∠AOD=∠PFD=90°,
又∵PE⊥AC,
∴∠AEP=90°,
∴∠AOD=∠AEP,
∴PE∥OD,
∵点P是AD的中点,
∴PE是△AOD的中位线,
∴PE=
1
2
OD,
∵PE=PF,
∴AO=OD,且AO⊥OD,
∴平行四边形ABCD是正方形,
设BC=x,
则BF=
2
2
x+
1
2
×<
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消
2
2