
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①ac>0;②b<0;③b2-4ac>0;④9a+3b+c
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①ac>0;②b<0;③b2-4ac>0;④9a+3b+c<0.其中,正确结论的是______.(只...
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①ac>0;②b<0;③b2-4ac>0;④9a+3b+c<0.其中,正确结论的是______.(只填序号)
展开
展开全部
①∵该抛物线的开口方向向上,
∴a>0;
∵该抛物线与y轴交于负半轴,
∴c<0,
∴ac<0;
故本选项错误;
②根据图象知,对称轴x=-
=1,
∴b=-2a<0,即b<0;
故本选项正确;
③由图象可知,该抛物线与x轴有两个不同的交点,
∴b2-4ac>0;故本选项正确;
④根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故本选项正确;
综上所述,正确的说法是:②③④.
故答案是:②③④.
∴a>0;
∵该抛物线与y轴交于负半轴,
∴c<0,
∴ac<0;
故本选项错误;
②根据图象知,对称轴x=-
b |
2a |
∴b=-2a<0,即b<0;
故本选项正确;
③由图象可知,该抛物线与x轴有两个不同的交点,
∴b2-4ac>0;故本选项正确;
④根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故本选项正确;
综上所述,正确的说法是:②③④.
故答案是:②③④.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |