已知:如图,四边形ABCD中,∠ABC=60°,AB=BC=2,对角线BD平分∠ABC,E是BC的中点,P是对角线BD上的一个
已知:如图,四边形ABCD中,∠ABC=60°,AB=BC=2,对角线BD平分∠ABC,E是BC的中点,P是对角线BD上的一个动点,则PE+PC的最小值为()A.3B.3...
已知:如图,四边形ABCD中,∠ABC=60°,AB=BC=2,对角线BD平分∠ABC,E是BC的中点,P是对角线BD上的一个动点,则PE+PC的最小值为( )A.3B.32C.2D.2
展开
1个回答
展开全部
解:明腊∵BA=BC=2,
∴平行四知差边形ABCD为菱形.
∴∠激猛滑ABD=∠CBD,
∴BD是∠ABC的平分线.
作E关BD的对称点E′,
连接CE′,PE,
则PE=PE′,
此时,PE+PC=PE′+PC=CE′,
CE′即为PE+PC的最小值.
∵∠ABC=60°,
又∵BE′=BE,
∴△E′BE为正三角形,EE′=1,∠ABE=60°,
故EE′=EC,
∠EE′C=∠ECE′=30°,
∴∠BE′C=60°+30°=90°,
在Rt△BCE′中,
CE′=
=
.
故选:A.
∴平行四知差边形ABCD为菱形.
∴∠激猛滑ABD=∠CBD,
∴BD是∠ABC的平分线.
作E关BD的对称点E′,
连接CE′,PE,
则PE=PE′,
此时,PE+PC=PE′+PC=CE′,
CE′即为PE+PC的最小值.
∵∠ABC=60°,
又∵BE′=BE,
∴△E′BE为正三角形,EE′=1,∠ABE=60°,
故EE′=EC,
∠EE′C=∠ECE′=30°,
∴∠BE′C=60°+30°=90°,
在Rt△BCE′中,
CE′=
2 2?1 2 |
3 |
故选:A.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询