已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+f(x)x>0,则关于x的函数g(x)=f(x)+1x的零点个数

已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+f(x)x>0,则关于x的函数g(x)=f(x)+1x的零点个数为()A.0B.1C.2D.3... 已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+f(x)x>0,则关于x的函数g(x)=f(x)+1x的零点个数为(  )A.0B.1C.2D.3 展开
 我来答
天堂密令丶涴撼
2014-11-05 · TA获得超过144个赞
知道答主
回答量:139
采纳率:50%
帮助的人:60.3万
展开全部
g(x)=f(x)+
1
x
=0,得f(x)=-
1
x

即xf(x)=-1,即零点满足此等式
不妨设h(x)=xf(x),则h'(x)=f(x)+xf'(x).
∵当x≠0时,f′(x)+
f(x)
x
>0

∴当x≠0时,
xf′(x)+f(x)
x
>0

即当x>0时,xf'(x)+f(x)>0,即h'(x)>0,此时函数h(x)单调递增,
当x<0时,xf'(x)+f(x)<0,即h'(x)<0,此时函数h(x)单调递减,
∴当x=0时,函数h(x)取得极小值,同时也是最小值h(0)=0,
∴h(x)≥0,
∴h(x)=-1无解,即xf(x)=-1无解
即函数g(x)=f(x)+
1
x
的零点个数为0个.
故选:A
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式