在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为CC1的中点.求证:(1)AC1∥平面BDE;(2)A1E⊥平面BDE

在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为CC1的中点.求证:(1)AC1∥平面BDE;(2)A1E⊥平面BDE.... 在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为CC1的中点.求证:(1)AC1∥平面BDE;(2)A1E⊥平面BDE. 展开
 我来答
放荡TA之
推荐于2016-01-06 · 超过60用户采纳过TA的回答
知道答主
回答量:111
采纳率:100%
帮助的人:109万
展开全部
解答:(1)证明:连接AC,设AC∩BD=O.由条件得ABCD为正方形,
所以O为AC中点.
∵E为CC1中点,
∴OE∥AC1
∵OE?平面BDE,AC1?平面BDE.
∴AC1∥平面BDE.
(2)连接B1E.设AB=a,则在△BB1E中,BE=B1E=
2
a,BB1=2a.
∴BE2+B1E2=BB12
∴B1E⊥BE.
由正四棱柱得,A1B1⊥平面BB1C1C,
∴A1B1⊥BE.
∴BE⊥平面A1B1E.
∴A1E⊥BE.
同理A1E⊥DE.
∴A1E⊥平面BDE.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式