高数 不定积分 有理函数的积分
展开全部
1、原式=(1/2)*∫d(x^2-2x+5)/(x^2-2x+5)+2∫dx/(x^2-2x+5)
=(1/2)*ln|x^2-2x+5|+2∫dx/[(x-1)^2+4]
=(1/2)*ln|x^2-2x+5|+arctan[(x-1)/2]+C,其中C是任意常数
2、令u=tan(x/2),则cosx=(1-u^2)/(1+u^2),dx=2du/(1+u^2)
原式=∫1/[3+(1-u^2)/(1+u^2)]*2du/(1+u^2)
=∫du/(2-u^2)
=(√2/4)*∫[1/(√2-u)+1/(√2+u)]du
=(√2/4)*[ln|√2+u|-ln|√2-u|]+C
=(√2/4)*[ln|√2+tan(x/2)|-ln|√2-tan(x/2)|]+C,其中C是任意常数
=(1/2)*ln|x^2-2x+5|+2∫dx/[(x-1)^2+4]
=(1/2)*ln|x^2-2x+5|+arctan[(x-1)/2]+C,其中C是任意常数
2、令u=tan(x/2),则cosx=(1-u^2)/(1+u^2),dx=2du/(1+u^2)
原式=∫1/[3+(1-u^2)/(1+u^2)]*2du/(1+u^2)
=∫du/(2-u^2)
=(√2/4)*∫[1/(√2-u)+1/(√2+u)]du
=(√2/4)*[ln|√2+u|-ln|√2-u|]+C
=(√2/4)*[ln|√2+tan(x/2)|-ln|√2-tan(x/2)|]+C,其中C是任意常数
追问
感谢你的回答!
1、原式=(1/2)*∫d(x^2-2x+5)/(x^2-2x+5)+2∫dx/(x^2-2x+5)
=(1/2)*ln|x^2-2x+5|+2∫dx/[(x-1)^2+4]
=(1/2)*ln|x^2-2x+5|+16arctan[(x-1)/2]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询