高中数学选修4-5不等式第二问求解 x+y>0 xy≠0这个条件怎么用
1个回答
展开全部
(1)
(x³+y³)-(x²y+y²x)
=(x+y)(x²-xy+y²)-xy(x+y)
=(x+y)(x²-2xy+y²)
=(x+y)(x-y)²
平方项恒非负,(x-y)²≥0,又已知x+y>0,因此(x+y)(x-y)²≥0
(x³+y³)-(x²y+y²x)≥0
x³+y³≥x²y+y²x,不等式成立。
(2)
xy≠0,x、y均不等于0,不等式有意义。
(x/y²+ y/x²)-(m/2)(1/x+1/y)
=(x³+y³)/(xy)² -(m/2)xy(x+y)/(xy)²
=[(x³+y³)-(m/2)xy(x+y)]/(xy)²
=[(x+y)(x²-xy+y²)-(m/2)xy(x+y)]/(xy)²
=(x+y)[x²+y²-(1+ m/2)xy]/(xy)²
(x/y²+ y/x²)≥(m/2)(1/x+1/y)恒成立,即(x+y)[x²+y²-(1+ m/2)xy]/(xy)²恒≥0
xy≠0,(xy)²恒>0,由已知得x+y>0,要不等式恒成立,只需x²+y²-(1+ m/2)xy恒≥0
[-(1+ m/2)]²-4≤0
-2≤1+ m/2≤2
解得-6≤m≤2
m的取值范围为[-6,2]
(x³+y³)-(x²y+y²x)
=(x+y)(x²-xy+y²)-xy(x+y)
=(x+y)(x²-2xy+y²)
=(x+y)(x-y)²
平方项恒非负,(x-y)²≥0,又已知x+y>0,因此(x+y)(x-y)²≥0
(x³+y³)-(x²y+y²x)≥0
x³+y³≥x²y+y²x,不等式成立。
(2)
xy≠0,x、y均不等于0,不等式有意义。
(x/y²+ y/x²)-(m/2)(1/x+1/y)
=(x³+y³)/(xy)² -(m/2)xy(x+y)/(xy)²
=[(x³+y³)-(m/2)xy(x+y)]/(xy)²
=[(x+y)(x²-xy+y²)-(m/2)xy(x+y)]/(xy)²
=(x+y)[x²+y²-(1+ m/2)xy]/(xy)²
(x/y²+ y/x²)≥(m/2)(1/x+1/y)恒成立,即(x+y)[x²+y²-(1+ m/2)xy]/(xy)²恒≥0
xy≠0,(xy)²恒>0,由已知得x+y>0,要不等式恒成立,只需x²+y²-(1+ m/2)xy恒≥0
[-(1+ m/2)]²-4≤0
-2≤1+ m/2≤2
解得-6≤m≤2
m的取值范围为[-6,2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询