求和:1+cosx+cos2x+…+cosnx 希望大神指点迷津~谢
1个回答
2017-05-25
展开全部
对于Sn=cosx+cos2x+cos3x+……+cosnx,有:
2sin(x/2)[cosx+cos2x+cos3x+……+cosnx ]
=2sin(x/2)cosx+2sin(x/2)cos2x+2sin(x/2)cos3x+……+2sin(x/2)cosnx
=sin(3x/2)-sin(x/2)+sin(5x/2)-sin(3x/2)+sin(7x/2)-sin(5x/2)+……+sin(x/2+nx)-sin(nx-x/2)
=sin(x/2+nx)-sin(x/2)
所以,
cosx+cos2x+cos3x+……+cosnx
=[sin(x/2+nx)-sin(x/2)]/[2sin(x/2)]
=sin(x/2+nx)/[2sin(x/2)]-1/2
故:1+cosx+cos2x+…+cosnx = sin(x/2+nx)/[2sin(x/2)] + 1/2
2sin(x/2)[cosx+cos2x+cos3x+……+cosnx ]
=2sin(x/2)cosx+2sin(x/2)cos2x+2sin(x/2)cos3x+……+2sin(x/2)cosnx
=sin(3x/2)-sin(x/2)+sin(5x/2)-sin(3x/2)+sin(7x/2)-sin(5x/2)+……+sin(x/2+nx)-sin(nx-x/2)
=sin(x/2+nx)-sin(x/2)
所以,
cosx+cos2x+cos3x+……+cosnx
=[sin(x/2+nx)-sin(x/2)]/[2sin(x/2)]
=sin(x/2+nx)/[2sin(x/2)]-1/2
故:1+cosx+cos2x+…+cosnx = sin(x/2+nx)/[2sin(x/2)] + 1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询