若函数f(x)=mx/4x-3(x≠3/4)在定义域内恒有F[F(X)]=X,则m=?
请详细,O(∩_∩)O谢谢F[F(X)]=m【(mx)/(4x-3)】÷[4(mx)/(4x-3)-3]=m^2x/(4mx-12x+9)=xm^2/(4mx-12x+9...
请详细,O(∩_∩)O谢谢
F[F(X)]=m【(mx)/(4x-3)】÷[4(mx)/(4x-3)-3]
=m^2x/(4mx-12x+9)=x
m^2/(4mx-12x+9)=1
∵对于定义域的所有X均成立,
分母上的X必须消去
所以4mx-12x=0
m=3
从这里不懂
=m^2x/(4mx-12x+9)=x
m^2/(4mx-12x+9)=1
∵对于定义域的所有X均成立,
分母上的X必须消去
所以4mx-12x=0
m=3 展开
F[F(X)]=m【(mx)/(4x-3)】÷[4(mx)/(4x-3)-3]
=m^2x/(4mx-12x+9)=x
m^2/(4mx-12x+9)=1
∵对于定义域的所有X均成立,
分母上的X必须消去
所以4mx-12x=0
m=3
从这里不懂
=m^2x/(4mx-12x+9)=x
m^2/(4mx-12x+9)=1
∵对于定义域的所有X均成立,
分母上的X必须消去
所以4mx-12x=0
m=3 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询