求极限:lim(x→0)(tanx-sinx)/x^3
2个回答
展开全部
那我就不用洛必达法则了呵呵~,用定理lim[x→0] sinx/x=1
lim[x→0] (tanx-sinx)/x³
=lim[x→消空0] (sinx/cosx-sinx)/x³
=lim[x→0] (sinx-sinxcosx)/(x³cosx)
=lim[x→0] sinx(1-cosx)/(x³cosx)
=lim[x→0] sin³x(1-cosx)/(x³sin²xcosx)
=lim[x→0] (sinx/x)³·(1-cosx)/(sin²xcosx)
=lim[x→0] (sinx/x)³·(1-cosx)/[(1-cos²x)cosx]
=lim[x→0] (sinx/x)³·(1-cosx)/渣桥州[(1+cosx)(1-cosx)cosx]
=lim[x→0] (sinx/x)³如蔽·1/[(1+cosx)cosx]
=1·1/(1+1)
=1/2
lim[x→0] (tanx-sinx)/x³
=lim[x→消空0] (sinx/cosx-sinx)/x³
=lim[x→0] (sinx-sinxcosx)/(x³cosx)
=lim[x→0] sinx(1-cosx)/(x³cosx)
=lim[x→0] sin³x(1-cosx)/(x³sin²xcosx)
=lim[x→0] (sinx/x)³·(1-cosx)/(sin²xcosx)
=lim[x→0] (sinx/x)³·(1-cosx)/[(1-cos²x)cosx]
=lim[x→0] (sinx/x)³·(1-cosx)/渣桥州[(1+cosx)(1-cosx)cosx]
=lim[x→0] (sinx/x)³如蔽·1/[(1+cosx)cosx]
=1·1/(1+1)
=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询