1)A+B不一定可逆,如 B=-A 。
2)AB可逆。这是由于A、B均可逆,则|A|不为0,|B|不为0,所以 |AB|=|A|*|B| 也不为0,故可逆。
3)A*B*可逆。由于 |A*B*|=|A*|*|B*|=|A|^(n-1)*|B|^(n-1) 不为0,故可逆。
4)(AB)^T可逆。因为 |(AB)^T|=|B^T*A^T|=|B^T|*|A^T|=|B|*|A| 不为0 ,故可逆。
扩展资料:
按照一定的规则,由排成正方形的一组(n个)数(称为元素)之乘积形成的代数和,称为n阶行列式。
例如:a1,a2,a3;
b1,b2,b3;
c1,c2,c3;排成的三阶行列式记为:
它的展开式为a1b2c3+a2b3c1+a3b1c2-a1b3c2-a2b1c3-a3b2c1. 行列式起源于线性方程组的求解,在数学各分支有广泛的应用。在代数上,行列式可用来简化某些表达式,例如表示含较少未知数的线性方程组的解等。
行列式的性质如下:
行列互换,行列式不变。
把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。
如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。
如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)
如果行列式中两行(列)成比例,那么行列式为零。
把一行(列)的倍数加到另一行(列),行列式不变。
对换行列式中两行(列)的位置,行列式反号。
参考资料来源:百度百科-n阶行列式
2023-07-25 广告