∫x²(4-x²)½dx
展开全部
∫x²√(4-x²)dx
设x=2sint,t∈[-π/2,π/2],则t=arcsin(x/2)
dx=2costdt,√(4-x²)=2cost
原式=∫4sin²t*4cos²tdt
=2∫(sin2t)²d(2t)
=2t-1/2*sin4t+C
=2t-sin2tcos2t+C
=2t-2sintcost*(cos²t-sin²t)+C
=2arcsin(x/2)-2*x/2*√(4-x²)/2*(4-x²-x²)/4+C
=2arcsin(x/2)+x/4*(x²-2)√(4-x²)+C
设x=2sint,t∈[-π/2,π/2],则t=arcsin(x/2)
dx=2costdt,√(4-x²)=2cost
原式=∫4sin²t*4cos²tdt
=2∫(sin2t)²d(2t)
=2t-1/2*sin4t+C
=2t-sin2tcos2t+C
=2t-2sintcost*(cos²t-sin²t)+C
=2arcsin(x/2)-2*x/2*√(4-x²)/2*(4-x²-x²)/4+C
=2arcsin(x/2)+x/4*(x²-2)√(4-x²)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询