如何证明有理数集和自然数集等势

 我来答
我爱学习112
高粉答主

2021-10-20 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:161万
展开全部

有理数可以看做平面中的整数点的一个子集(p,q)对应p/q,然后从原点螺旋向外经过每一个整数点并排序即可得到从自然数的某个子集到有理数集的满射。

说明自然数集的势大于等于有理数集的势。而自然数又是有理数的子集,则自然数的势小于等于有理数的势。结合起来就是等号。

简介

整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。

有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

府崖芳5245
2017-10-11 · TA获得超过268个赞
知道小有建树答主
回答量:204
采纳率:0%
帮助的人:51.3万
展开全部
有限集和无限集不是这样分的.问题有点复杂,先给你答案. 自然数集、 有理数集、 代数数集都是可列集. 实数集、复数集、直线点集、 平面点集都是不可列集(或不可数集). 有限集都可以说是自然数的真子集,当然可列,但没有可列有限集这个词.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式