高中数学导数证明 10
展开全部
f'(x)=(1-lnx)/x^2
当0<x<e时,f'(x)>0,f(x)递增;当x>e时,f'(x)<0,f(x)递减
所以2f(x)<=2f(e)=2e^(-1)
令g(x)=(x+1)e^(x-2)
g'(x)=e^(x-2)+(x+1)(x-2)e^(x-2)=(x^2-x-1)e^(x-2)
当0<x<(1+√5)/2时,g'(x)<0,g(x)递减;当x>(1+√5)/2时,g'(x)>0,g(x)递增
所以g(x)>=g[(1+√5)/2]=[(3+√5)/2]*e^[(√5-3)/2]
因为(3+√5)/2>2,(√5-3)/2>-1,所以[(3+√5)/2]*e^[(√5-3)/2]>2e^(-1)
即2f(x)<=2e^(-1)<[(3+√5)/2]*e^[(√5-3)/2]<=g(x)
2f(x)<(x+1)e^(x-2)
当0<x<e时,f'(x)>0,f(x)递增;当x>e时,f'(x)<0,f(x)递减
所以2f(x)<=2f(e)=2e^(-1)
令g(x)=(x+1)e^(x-2)
g'(x)=e^(x-2)+(x+1)(x-2)e^(x-2)=(x^2-x-1)e^(x-2)
当0<x<(1+√5)/2时,g'(x)<0,g(x)递减;当x>(1+√5)/2时,g'(x)>0,g(x)递增
所以g(x)>=g[(1+√5)/2]=[(3+√5)/2]*e^[(√5-3)/2]
因为(3+√5)/2>2,(√5-3)/2>-1,所以[(3+√5)/2]*e^[(√5-3)/2]>2e^(-1)
即2f(x)<=2e^(-1)<[(3+√5)/2]*e^[(√5-3)/2]<=g(x)
2f(x)<(x+1)e^(x-2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询