1个回答
展开全部
f(x)=x²+ax+3-a=(x+a/2)²-a²/4-a+3为开口向上抛物线
当顶点x<=-2时即-a/2<=-2,a>=4时f(x)在x∈[-2,2]为增函数
要f(x)≥0恒成立即只需f(-2)≥0
(-2)²+(-2)a+3-a>=0
得a<=7/3 又a>=4 ,所以不成立
当顶点x>=2时即-a/2>=2,a<=-4时f(x)在x∈[-2,2]为减函数
要f(x)≥0恒成立即只需f(2)≥0
2²+2a+3-a>=0
得a>=-7 又a<=-4 ,所以-7<=a<=-4
当顶点-2<x<2时即-2<-a/2<2 ,-4<a<4时
要f(x)≥0恒成立即只需f(-a/2)≥0
即-a²/4-a+3>=0
(a+2)²<=16
-6<=a<=2
又-4<a<4 得-4<a<=2
所以由-7<=a<=-4 或-4<a<=2 得-7<=a<=2
a的取值范围为-7<=a<=2
当顶点x<=-2时即-a/2<=-2,a>=4时f(x)在x∈[-2,2]为增函数
要f(x)≥0恒成立即只需f(-2)≥0
(-2)²+(-2)a+3-a>=0
得a<=7/3 又a>=4 ,所以不成立
当顶点x>=2时即-a/2>=2,a<=-4时f(x)在x∈[-2,2]为减函数
要f(x)≥0恒成立即只需f(2)≥0
2²+2a+3-a>=0
得a>=-7 又a<=-4 ,所以-7<=a<=-4
当顶点-2<x<2时即-2<-a/2<2 ,-4<a<4时
要f(x)≥0恒成立即只需f(-a/2)≥0
即-a²/4-a+3>=0
(a+2)²<=16
-6<=a<=2
又-4<a<4 得-4<a<=2
所以由-7<=a<=-4 或-4<a<=2 得-7<=a<=2
a的取值范围为-7<=a<=2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询