矩阵的迹是什么?有什么性质?

 我来答
秋日传奇2018
高粉答主

2020-12-20 · 每个回答都超有意思的
知道大有可为答主
回答量:3万
采纳率:65%
帮助的人:2755万
展开全部
矩阵的迹是指线性代数中矩阵的主对角线上各个元素的总和;矩阵的迹拥有的性质为:矩阵的迹是所有对角元的和,矩阵的迹也是所有特征值的和,若矩阵有N阶,则矩阵的迹就等于矩阵的特征值的总和,也即矩阵的主对角线元素的总和。

一、设有N阶矩阵A,那么矩阵A的迹(用tr(A)表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。
1.迹是所有对角元的和
2.迹是所有特征值的和
3.某些时候也利用tr(AB)=tr(BA)来求迹
4.tr(mA+nB)=m tr(A)+n tr(B)
二、奇异值分解(Singular value decomposition )
奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*V
U和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。
如果A是复矩阵,B中的奇异值仍然是实数。
SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。
三、在数值分析中,由于数值计算误差,测量误差,噪声以及病态矩阵,零奇异值通常显示为很小的数目。
将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。
矩阵的奇异值和按奇异值分解是矩阵理论和应用中十分重要的内容,已成为多变量反馈控制系统最重要最基本的分析工具之一,奇异值实际上是复数标量绝对值概念的推广, 表示了反馈控制系统的输出/输入增益,能反映控制系统的特性。
铎傅香赢鹃
2019-12-03 · TA获得超过3.5万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:656万
展开全部
矩阵的迹,就是矩阵主对角线上元素之和,英文叫trace(迹)。
迹的最重要性质:一个矩阵的迹,和该矩阵的特征值之和,相等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
拱绚须智刚
2020-12-03 · TA获得超过1018个赞
知道小有建树答主
回答量:2065
采纳率:100%
帮助的人:11.8万
展开全部
矩阵的迹是指线性代数中矩阵的主对角线上各个元素的总和;

矩阵的迹拥有的性质为:矩阵的迹是所有对角元的和,矩阵的迹也是所有特征值的和,若矩阵有N阶,则矩阵的迹就等于矩阵的特征值的总和,也即矩阵的主对角线元素的总和。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北梓维楼婵
2019-09-26 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:959万
展开全部
矩阵的迹是矩阵特征值的和,即矩阵主对角线元素的和。
性质:
1.
迹是所有对角元的和
2.
迹是所有特征值的和
3.
trace(AB)=trace(BA)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式