已知实数x,y满足方程4x+3y-1=0,求x^2+y^2的最小值
1个回答
展开全部
解:由4x+3y-1=0得:y=(1-4x)/3代入x^2+y^2得:
x^2+y^2=x^2+【(1-4x)/3】^2=x^2+(1-8x+16x^2)/9=25x^2/9-8x/9+1/9
=25/9[x^2-8x/25+(4/25)^2-(4/25)^2]+1/9(此时在添项进行配方)
=25/9(x-4/25)^2-(25/9)*(16/625)+1/9
=25/9(x-4/25)^2+1/25
所以当x=4/25时,x^2+y^2有最小值1/25
x^2+y^2=x^2+【(1-4x)/3】^2=x^2+(1-8x+16x^2)/9=25x^2/9-8x/9+1/9
=25/9[x^2-8x/25+(4/25)^2-(4/25)^2]+1/9(此时在添项进行配方)
=25/9(x-4/25)^2-(25/9)*(16/625)+1/9
=25/9(x-4/25)^2+1/25
所以当x=4/25时,x^2+y^2有最小值1/25
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询