高等数学求解?
1个回答
展开全部
原式 = ∑<n=1,∞> (n+sinn)/(n+1)^2
= ∑<n=1,∞> (n+1-1+sinn)/(n+1)^2
= ∑<n=1,∞> 1/(n+1) - ∑<n=1,∞> (1-sinn)/(n+1)^2
前者发散, 后者收敛, 其代数和发散。
= ∑<n=1,∞> (n+1-1+sinn)/(n+1)^2
= ∑<n=1,∞> 1/(n+1) - ∑<n=1,∞> (1-sinn)/(n+1)^2
前者发散, 后者收敛, 其代数和发散。
更多追问追答
追问
但是答案是收敛啊
追答
感觉答案不对。
原式 = ∑ (n+sinn)/(n+1)^2 > ∑ (n-1)/(n+1)^2
对于后者 ∑ (n-1)/(n+1)^2, 取与之比较级数 ∑ 1/(n+1)
即 an = (n-1)/(n+1)^2, bn = 1/(n+1)
liman/bn = lim(n-1)/(n+1) = 1
根据比较判别法的极限形式
∑ (n-1)/(n+1)^2 与 ∑ 1/(n+1) 同敛散,
∑ 1/(n+1) 发散,则 ∑ (n-1)/(n+1)^2 发散,
进而 ∑ (n+sinn)/(n+1)^2 发散啊。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询