在三角形ABC中,角ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF
若AB≠AC,∠BAC≠90°,点D在BC上运动,当△ABC满足于一个什么条件时,CF⊥BC(C、F重合除外)...
若AB≠AC,∠BAC≠90°,点D在BC上运动,当△ABC满足于一个什么条件时,CF⊥BC(C、F重合除外)
展开
展开全部
当∠BCA=45º时,CF⊥BD(如图丁).
理由是:过点A作AG⊥AC交BC于点G,∴AC=AG
可证:△GAD≌△CAF ∴∠ACF=∠AGD=45º
∠BCF=∠ACB+∠ACF= 90º. 即CF⊥BD 。(图就是A1377051的图)
理由是:过点A作AG⊥AC交BC于点G,∴AC=AG
可证:△GAD≌△CAF ∴∠ACF=∠AGD=45º
∠BCF=∠ACB+∠ACF= 90º. 即CF⊥BD 。(图就是A1377051的图)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询