数学里面 梯度 这个概念很复杂吗?能否简单的讲讲
18个回答
展开全部
梯度
在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧氏空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅戈比矩阵的一个特殊情况。
在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。
梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的点积来得到斜度。梯度的数值有时也被成为梯度。
如果你是问在纯数学中的作用,那就是反映那个量变化的有多剧烈;多元微积分中则还反映在哪个方向上变化最剧烈
在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧氏空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅戈比矩阵的一个特殊情况。
在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。
梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的点积来得到斜度。梯度的数值有时也被成为梯度。
如果你是问在纯数学中的作用,那就是反映那个量变化的有多剧烈;多元微积分中则还反映在哪个方向上变化最剧烈
展开全部
梯度
在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧氏空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅戈比矩阵的一个特殊情况。
在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。
梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的点积来得到斜度。梯度的数值有时也被成为梯度。
如果你是问在纯数学中的作用,那就是反映那个量变化的有多剧烈;多元微积分中则还反映在哪个方向上变化最剧烈.
在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧氏空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅戈比矩阵的一个特殊情况。
在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。
梯度一词有时用于斜度,也就是一个曲面沿着给定方向的倾斜程度。可以通过取向量梯度和所研究的方向的点积来得到斜度。梯度的数值有时也被成为梯度。
如果你是问在纯数学中的作用,那就是反映那个量变化的有多剧烈;多元微积分中则还反映在哪个方向上变化最剧烈.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
梯形的概念很简单,是指一组对边平行,而另一组对边不平行的四边形。所以梯形包括直角梯形,等腰梯形和普通梯形。一组对边平行可以把它想象成火车的两个轨道,等腰梯形可以以身体做姿势,总之数学的东西一定要与生活联系,因为数学便是生活化的数学。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
梯度在向危机分钟。标量场的梯度是一个向量场。标量场中某一点上的梯度,指向标量场增长最快的方向。梯度的长度是这个最大的变化率,严格的说从欧式空间二n到二的函数的梯度。是在二n某一点最佳的线近似
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询