展开全部
dy/dx = 1/(x+y)
两边倒数
dx/dy = x+y
dx/dy - x = y
两边乘以 e^(-y)
e^(-y)[dx/dy - x] = ye^(-y)
d/dx ( x.e^(-y) = ye^(-y)
两边积分
x.e^(-y)
=∫ye^(-y) dy
=-∫yde^(-y)
分部积分∫udv =uv -∫vdu
=-ye^(-y) +∫e^(-y) dy
=-ye^(-y) -e^(-y) +C
整理方程
x=-y -1 +C.e^(y)
dy/dx = 1/(x+y)
得出通解:x=-y -1 +C.e^(y)
两边倒数
dx/dy = x+y
dx/dy - x = y
两边乘以 e^(-y)
e^(-y)[dx/dy - x] = ye^(-y)
d/dx ( x.e^(-y) = ye^(-y)
两边积分
x.e^(-y)
=∫ye^(-y) dy
=-∫yde^(-y)
分部积分∫udv =uv -∫vdu
=-ye^(-y) +∫e^(-y) dy
=-ye^(-y) -e^(-y) +C
整理方程
x=-y -1 +C.e^(y)
dy/dx = 1/(x+y)
得出通解:x=-y -1 +C.e^(y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询