已知数列{an}的首项a1=1,前n项和为Sn,且3Sn-4,an,2-(3S(n-1))/2(n≥2)成等差数列?
1个回答
展开全部
1:设a2=x.则 3(1+x)-4+2-3/2=2x 得x=1/2
又 3Sn-4 + 2-(3S(n-1))/2 = 2an (n≥2)
3Sn-4 + 2 - 3(Sn-an)/2 =2an 得Sn=(an+4)/3
则n>2时 S(n-1)=(a(n-1)+4)/3
an=Sn-S(n-1)=[an-a(n-1)]/3 得an=-a(n-1)/2
故通项an=1 (n=1)
=1/2 (n=2)
=1/2*(-1/2)^(n-2)=-(-1/2)(n-1) (n>2)
2,3可以合并,即得
an=1 (n=1)
=1/2*(-1/2)^(n-2)=-(-1/2)^(n-1) (n>=2)
2:和式=1/3 -(1/3-1/5) - (1/5-1/9) - (1/9-1/17) ...(这里符号估计有问题,要不就太难了)
=1/[2^(2n-1)+1],3,谢谢哈!我已经毕业了,已知数列{an}的首项a1=1,前n项和为Sn,且3Sn-4,an,2-(3S(n-1))/2(n≥2)成等差数列
(Ⅰ)求通项an
(Ⅱ)求和式:1/(2S1S2)-1/(4S2S3)+1/(8S3S4)-…+1/(2^(2n-1)*S(2n-1)*S2n)
又 3Sn-4 + 2-(3S(n-1))/2 = 2an (n≥2)
3Sn-4 + 2 - 3(Sn-an)/2 =2an 得Sn=(an+4)/3
则n>2时 S(n-1)=(a(n-1)+4)/3
an=Sn-S(n-1)=[an-a(n-1)]/3 得an=-a(n-1)/2
故通项an=1 (n=1)
=1/2 (n=2)
=1/2*(-1/2)^(n-2)=-(-1/2)(n-1) (n>2)
2,3可以合并,即得
an=1 (n=1)
=1/2*(-1/2)^(n-2)=-(-1/2)^(n-1) (n>=2)
2:和式=1/3 -(1/3-1/5) - (1/5-1/9) - (1/9-1/17) ...(这里符号估计有问题,要不就太难了)
=1/[2^(2n-1)+1],3,谢谢哈!我已经毕业了,已知数列{an}的首项a1=1,前n项和为Sn,且3Sn-4,an,2-(3S(n-1))/2(n≥2)成等差数列
(Ⅰ)求通项an
(Ⅱ)求和式:1/(2S1S2)-1/(4S2S3)+1/(8S3S4)-…+1/(2^(2n-1)*S(2n-1)*S2n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询