求证P(X>
展开全部
∵X~N(3,4),∴(X-3)/2~N(0,1)。
∴(1),P{丨X丨>2}=P(X>2)+P(X<-2)。
而P(X>2)=P[(x-3)/2>(2-3)/2=-1/2]=1-Φ(-1/2)=Φ(1/2);P(X<-2)=P[(x-3)/2<(-2-3)/2=-5/2]=Φ(-5/2)=1-Φ(5/2)。查标准正态分布表Φ(1/2)=0.6915、Φ(5/2)=0.9938,
∴P{丨X丨>2}=Φ(1/2)+1-Φ(5/2)=0.6915+1-0.9938=0.6977。
(2),P{X>3}=P[(x-3)/2>(3-3)/2=0]=1-Φ(0)。而Φ(0)=1/2,∴P{X>3}=1-1/2=1/2。
扩展资料
正态分布的图形特征
集中性:正态曲线的高峰位于正中央,即均数所在的位置。
对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询