求矩阵的秩和逆矩阵
系数矩阵化最简行
1 1 1 1
2 3 1 1
4 5 3 3
第2行,第3行, 加上第1行×-2,-4
1 1 1 1
0 1 -1 -1
0 1 -1 -1
第1行,第3行, 加上第2行×-1,-1
1 0 2 2
0 1 -1 -1
0 0 0 0
增行增列,求基础解系
1 0 2 2 0 0
0 1 -1 -1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
第1行,第2行, 加上第3行×-2,1
1 0 0 2 -2 0
0 1 0 -1 1 0
0 0 1 0 1 0
0 0 0 1 0 1
第1行,第2行, 加上第4行×-2,1
1 0 0 0 -2 -2
0 1 0 0 1 1
0 0 1 0 1 0
0 0 0 1 0 1
得到基础解系:
(-2,1,1,0)T
(-2,1,0,1)T
因此通解是
C1(-2,1,1,0)T + C2(-2,1,0,1)T
2021-11-22 广告