如果A是n阶方阵,则对任意的a∈?

 我来答
我爱学习112
高粉答主

2022-10-22 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:162万
展开全部

A不可逆

|A*|=0

|A|=0

显然成立;

A不可逆

A*=|A|A^(-1)

取行列式,得

|A*|=||A|A^(-1)|=|A|^zhin ·|A^(-1)|

=|A|^n ·|A|^(-1)

=|A|^(n-1)

相关定理

定理1、设A为一n×n矩阵,则det(AT)=det(A)[2]。

证 对n采用数学归纳法证明。显然,因为1×1矩阵是对称的,该结论对n=1是成立的。假设这个结论对所有k×k矩阵也是成立的,对(k+1)×(k+1)矩阵A,将det(A)按照A的第一行展开,我们有:

det(A)=a11det(M11)-a12det(M12)+-…±a1,k+1det(M1,k+1)。

定理2、设A为一n×n三角形矩阵。则A的行列式等于A的对角元素的乘积。

根据定理1,只需证明结论对下三角形矩阵成立。利用余子式展开和对n的归纳法,容易证明这个结论。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式