什么情况用T检验,什么情况用F检验?
2023-07-12 · 百度认证:SPSSAU官方账号,优质教育领域创作者
什么情况用T检验,什么情况用F检验?
方差分析又称“F检验”,用于两个及两个以上样本均数差别的显著性检验, 方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
根据研究中自变量X的不同,方差分析又可以进行细分。X的个数为一个时,我们称之为单因素方差;X为2个时则为双因素方差;X为3个时则称作三因素方差,依次下去。当X超过1个时,统称为多因素方差。
在此以SPSSAU-在线SPSS分析软件为工具介绍详细情况。
单因素方差分析: 用于分析定类数据与定量数据之间的关系情况。在使用单因素方差分析时,需要每个选项的样本量大于30,比如男性和女性样本量分别是100和120,如果出现某个选项样本量过少时应该首先进行组别合并处理,比如研究不同年龄组样本对于研究变量的差异性态度时,年龄小于20岁的样本量仅为20个,那么需要将小于20岁的选项与另外一组(比如20~25岁)的组别合并为一组,然后再进行单因素方差分析。
如果选项无法进行合并处理,比如研究不同专业样本对于变量的态度差异,研究样本的专业共分为市场营销、心理学、教育学和管理学四个专业,这四个专业之间为彼此独立无法进行合并组别,但是市场营销专业样本量仅为20并没有代表意义,因此可以考虑首先筛选出市场营销专业,即仅比较心理学,教育学和管理学这三个专业对某变量的差异性态度,当对比的组别超过三个,并且呈现出显著性差异时,可以考虑使用事后检验进一步对比具体两两组别间的差异情况。
双因素方差分析: 用于分析定类数据(2个)与定量数据之间的关系情况,例如研究人员性别,学历对于网购满意度的差异性;以及男性或者女性时,不同学历是否有着网购满意度差异性;或者同一学历时,不同性别是否有着网购满意度差异性。
多因素方差分析: 通常用于类实验式问卷研究。比如研究者测试某新药对于胆固醇水平是否有疗效;研究者共招募72名被试,男女分别为36名,以及男女分别再细分使用新药和普通药物;同时高血压患者对于新药可能有干扰,因而研究者将被试是否患高血压也纳入考虑范畴中。因而最终,X共分为三个,分别是药物(旧药和新药)、性别,是否患高血压;Y为胆固醇水平。因而需要进行三因素方差分析即多因素方差分析。
t检验
t检验,主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
T检验共分为三种方法,分别是独立样本T检验,配对样本T检验和单样本T检验。
独立样本T检验:独立样本T检验比较两组选项的差异,比如男性和女性。相对来讲,独立样本T检验在实验比较时使用频率更高,尤其是生物、医学相关领域。针对问卷研究。
独立样本T检验和配对样本T检验功能上都是比较差异,而且均是比较两个组别差异。但二者有着实质性区别,如果是比较不同性别,婚姻状况(已婚和未婚)样本对某变量的差异时,应该使用独立样本T检验。如果比较组别之间有配对关系时,只能使用配对样本T检验,配对关系是指类似实验组和对照组的这类关系。另外独立样本T检验两组样本个数可以不相等,而配对样本T检验的两组样本量需要完全相等。
单样本T检验。这里用一个例子来说明,比如问卷某题项选项表示为1分代表非常不满意,2分代表比较不满意,3分代表一般,4分代表比较满意,5分代表非常满意,当想分析样本对此题项的态度是否有明显的倾向,比如明显高于3分或者明显低于3分时,即可以使用单样本T检验。单样本T检验是比较某个题项的平均得分是否与某数字(例子是与3进行对比)有着明显的差异,如果呈现出显著性差异,即说明明显该题项平均打分明显不等于3分。此分析方法在问卷研究中较少使用,平均得分是否明显不为3分可以很直观的看出,而不需要单独进行检验分析。
方差和T检验的区别在于,对于T检验的自变量X来讲,只能为2个类别比如男和女。如果X为3个类别比如本科以下,本科,本科以上;此时只能使用方差分析。
在方法选择上,问卷研究通常会使用方差分析,但某些专业,比如心理学、教育学或者师范类专业等涉及到实验研究时,更多会使用T检验进行分析,另外方差分析与T检验还有较多差异,在某些分析中只能使用其中一种。
通常的F检验例子包括:
1、假设一系列服从正态分布的母体,都有相同的标准差。这是最典型的F检验,该检验在方差分析(ANOVA)中也非常重要。
2、假设一个回归模型很好地符合其数据集要求。
通常的t检验:
(1) 已知一个总体均数;
(2) 可得到一个样本均数及该样本标准差;
(3) 样本来自正态或近似正态总体
t检验的前提是方差齐,只有方差齐了,t检验的结果才反应两组数据的是否有差异,否则如果方差不齐的话,会把组内的差异也考虑进去,所以判定的概率就更宽松。
而F检验其实就是看组间差异和组内差异的比较,所以本质上和t检验方差齐的概念相似。但是实际上在方差不齐的时候是无法进行t检验的,结果不具有统计学意义。
t检验一般适用于两组,所以在多维的情况下,不适用t检验,而F检验可以判定多组、一组多变量和多组间有交互(单因素、协方差、双因素无重复、双因素有重复等),然后在通过两两比较进行分析,用duncan和tukey等方法去判定,F检验的范围要大的多。
扩展资料
T检验和F检验的由来:
一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显著性(sig)就是出现目前样本这结果的机率。
参考资料来源:百度百科-t检验
参考资料来源:百度百科-F检验