如何证明垂径定理

 我来答
好人来了678
2022-10-27 · TA获得超过1276个赞
知道小有建树答主
回答量:792
采纳率:100%
帮助的人:14.1万
展开全部

垂径定理知二推三是一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论。称为知二得三(知二推三)。五个条件是平分弦所对的优弧、平分弦所对的劣弧(前两条合起来就是,平分弦所对的两条弧)、平分弦(不是直径)、垂直于弦、过圆心。

相关信息

1、垂径定理是数学几何(圆)中的一个定理,它的通俗的表达是垂直于弦的直径平分弦且平分这条弦所对的两条弧。垂径定理是圆的重要性质之一,它是证明圆内线段、角相等、垂直关系的重要依据,也为圆中的计算、证明和作图提供了依据、思路和方法。

2、垂径定理是,垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧。推论一是平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧。推论二是弦的垂直平分线经过圆心,并且平分这条弦所对的弧。

3、推论三是平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式