十字相乘法的解法步骤
1个回答
展开全部
十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
很简单的 哟!!!
x²+x-6=(x-2)(x+3)
过程如下:
x²+x-6【先想想一个数乘另一个数怎样才能等于-6,相等于-6的就有 1乘-6,,2乘-3,3乘-2,6乘-1,这么多,再看x²+x-6中间的x也就是1乘x,想要等于1,就得看x²+x-6中的最后的-6,也就是说一个数换乘另一个数最后积要等于-6,相加又要等于1,那就只有-2乘3了】
so。x²+x-6=(x-2)(x+3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |