设向量组α1,α2,…αs的秩为r,且其中每个向量都可经α1,α2,…αr线性表出,证明α1,α2,…αr为
设向量组α1,α2,…αs的秩为r,且其中每个向量都可经α1,α2,…αr线性表出,证明α1,α2,…αr为α1,α2,…αs的一个极大线性无关组...
设向量组α1,α2,…αs的秩为r,且其中每个向量都可经α1,α2,…αr线性表出,证明α1,α2,…αr为α1,α2,…αs的一个极大线性无关组
展开
展开全部
α1,α2,…αs的秩为r
then
αr+1= (β1,r+1)α1 + (β2,r+1))α2 + ...
+ ... +(βr,r+1)αr
αr+2= (β1,r+2)α1 + (β2,r+2))α2 + ...
+ ... +(βr,r+2)αr
.
.
αs= (β1,s)α1 + (β2,s))α2 + ...
+ ... +(βr,s)αr
where r≤s ∈ Z+
(βi,j) is constant,
i=1,2,...,r
j= r+1,r+2,...,s
any linear combination of
αr+1,αr+2,…αs can be in terms of
α1,α2,…αr
ie
γ1αr+1 + γ2αr+2 + ... +γs-rαs
=β1α1+β2α2+...+βrαr
=> any linear combination of
α1,αr2,…αs can be in terms of
α1,α2,…αr
ie α1,α2,…αr为α1,α2,…αs的一个极大线性无关组
then
αr+1= (β1,r+1)α1 + (β2,r+1))α2 + ...
+ ... +(βr,r+1)αr
αr+2= (β1,r+2)α1 + (β2,r+2))α2 + ...
+ ... +(βr,r+2)αr
.
.
αs= (β1,s)α1 + (β2,s))α2 + ...
+ ... +(βr,s)αr
where r≤s ∈ Z+
(βi,j) is constant,
i=1,2,...,r
j= r+1,r+2,...,s
any linear combination of
αr+1,αr+2,…αs can be in terms of
α1,α2,…αr
ie
γ1αr+1 + γ2αr+2 + ... +γs-rαs
=β1α1+β2α2+...+βrαr
=> any linear combination of
α1,αr2,…αs can be in terms of
α1,α2,…αr
ie α1,α2,…αr为α1,α2,…αs的一个极大线性无关组
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询