已知数列an是等差数列,且a1≠0,Sn为这个数列的前n项和。 求1、lim nan/Sn 2、lim (Sn+Sn+1)/(Sn+Sn-1)
1个回答
展开全部
1、
Sn=(a1+an)n/2
所以nan/Sn=2an/(a1+an)
=2[a1+(n-1)d]/[2a1+(n-1)d]
上下除以(n-1)
=2[a1/(n-1)+d]/[2a1/(n-1)+d]
n-1趋于无穷,所以1/(n-1)趋于0
所以极限=2d/d=2
2、
原式=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]
=(2n²+4n+2)/2n²
=1+2/n+1/n²
所以极限=1
觉得满意就加点分
Sn=(a1+an)n/2
所以nan/Sn=2an/(a1+an)
=2[a1+(n-1)d]/[2a1+(n-1)d]
上下除以(n-1)
=2[a1/(n-1)+d]/[2a1/(n-1)+d]
n-1趋于无穷,所以1/(n-1)趋于0
所以极限=2d/d=2
2、
原式=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]
=(2n²+4n+2)/2n²
=1+2/n+1/n²
所以极限=1
觉得满意就加点分
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询