求详细讲解几道微积分题目,希望说下解题的方法
展开全部
①lim(x->∞) [(x+1)/(x+2)]^x
=lim(x->∞) [ 1 + (-1/(x+2) ]^{ [-(x+2)] [-1/(x+2)] [x] }
=lim(x->∞) { [ 1 + (-1/(x+2) ]^[-(x+2)] }^ [-x/(x+2)]
∵ lim(x->∞) { [ 1 + (-1/(x+2) ]^[-(x+2)] } = e
lim(x->∞) [-x/(x+2)] = -1
=e^(-1) = 1/e
②lim(x->1) (1-2lnx)^(1/lnx)
=lim(x->1) [1+(-2lnx)]^{ 1/(-2lnx) *(-2lnx)*(1/lnx) }
=lim(x->1) { [1+(-2lnx)]^[1/(-2lnx)] } ^ (-2)
∵lim(x->1) -2lnx = 0 , ∴ lim(x->1) { [1+(-2lnx)]^[1/(-2lnx)] } = e
= e^(-2)
=lim(x->∞) [ 1 + (-1/(x+2) ]^{ [-(x+2)] [-1/(x+2)] [x] }
=lim(x->∞) { [ 1 + (-1/(x+2) ]^[-(x+2)] }^ [-x/(x+2)]
∵ lim(x->∞) { [ 1 + (-1/(x+2) ]^[-(x+2)] } = e
lim(x->∞) [-x/(x+2)] = -1
=e^(-1) = 1/e
②lim(x->1) (1-2lnx)^(1/lnx)
=lim(x->1) [1+(-2lnx)]^{ 1/(-2lnx) *(-2lnx)*(1/lnx) }
=lim(x->1) { [1+(-2lnx)]^[1/(-2lnx)] } ^ (-2)
∵lim(x->1) -2lnx = 0 , ∴ lim(x->1) { [1+(-2lnx)]^[1/(-2lnx)] } = e
= e^(-2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询