
证明:两个连续奇数的平方差是8的倍数
4个回答
展开全部
证明:设两个奇数是2n-1,2n+1(n≥1)
那么连续两个奇数的平方差等于:(2n+1)2-(2n-1)2=8n
因为n≥1 而且是整数
所以这个平方差一定是8的倍数.
(2n+1)²-(2n-1)²=(2n+1+2n-1)(2n+1-2n+1)=4n*2=8n
那么连续两个奇数的平方差等于:(2n+1)2-(2n-1)2=8n
因为n≥1 而且是整数
所以这个平方差一定是8的倍数.
(2n+1)²-(2n-1)²=(2n+1+2n-1)(2n+1-2n+1)=4n*2=8n

2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
设这两个奇数为2n+1,2n-1
(2n+1)(2n+1)-(2n-1)(2n-1)
=4n方+4n+1-(4n方-4n+1)
=4n方+4n+1-4n方+4n-1
=8n
所以是8的倍数
我不会打平方所以用文字代替
(2n+1)(2n+1)-(2n-1)(2n-1)
=4n方+4n+1-(4n方-4n+1)
=4n方+4n+1-4n方+4n-1
=8n
所以是8的倍数
我不会打平方所以用文字代替
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(a+2)^2-a^2=4(a+1)当a为偶数的时候,这个数字能够被4整除,但不能被8整除当a为奇数的时候,这个数字可以被8整除所以两个连续奇数的平方差(取正数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设这两个连续的奇数分别为2n-1,2n+1 n∈N*
证明:
(2n+1)^2-(2n-1)^2
=8n
因为n∈N*
所以两个连续奇数的平方差是8的倍数得证
证明:
(2n+1)^2-(2n-1)^2
=8n
因为n∈N*
所以两个连续奇数的平方差是8的倍数得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询