如图,已知在△ABC中,∠ACB=90°,AC=BC,过点C作∠ECF=45°,两边分别交线段AB于点E,F,求证EF²=AE&sup
如图,已知在△ABC中,∠ACB=90°,AC=BC,过点C作∠ECF=45°,两边分别交线段AB于点E,F,求证EF²=AE²+BF²...
如图,已知在△ABC中,∠ACB=90°,AC=BC,过点C作∠ECF=45°,两边分别交线段AB于点E,F,求证EF²=AE²+BF²
展开
1个回答
展开全部
设∠ACE=α,∠BCF=β,则α+β=45,α+β+45=90,2(α+β)=90
⊿ACE中用正弦定理有 AE/sinα=CE/sin45
所以CE=AEsin45/sinα
⊿CEF中用正弦定理有:EF/sin45=CE/sin(45+β)=CE/cosα
所以 EF=sin45* AEsin45/sinαcosα=AE/sin2α
所以 AE=EF*sin2α
同理BF=EF*sin2β
所以AE²+BF² =EF²(sin²2α+sin²2β)=EF²得证
⊿ACE中用正弦定理有 AE/sinα=CE/sin45
所以CE=AEsin45/sinα
⊿CEF中用正弦定理有:EF/sin45=CE/sin(45+β)=CE/cosα
所以 EF=sin45* AEsin45/sinαcosα=AE/sin2α
所以 AE=EF*sin2α
同理BF=EF*sin2β
所以AE²+BF² =EF²(sin²2α+sin²2β)=EF²得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询