在三角形ABC中,三边ABC和面积S满足关系S=a^2-(b-c)^2,求sinA 1个回答 #热议# 不吃早饭真的会得胆结石吗? 随便_看下 2010-10-17 · TA获得超过3763个赞 知道小有建树答主 回答量:592 采纳率:0% 帮助的人:646万 我也去答题访问个人页 关注 展开全部 S=a^2-(b-c)^2=bcsinA/2,再利用对角A的余弦定理,带入到前公式中,最终得sinA+cosA=1,所以A为90或0(排除),所以答案为1。希望对你有帮助! 本回答由网友推荐 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-07-21 已知三角形ABC中三边与面积的关系为S=(a^2+b^2-c^2)/4√3,则cosC的值为 2022-06-24 在三角形ABC中,三边abc与面积S的关系式为a^2+4s=b^2+c^2 则角A为 2022-05-30 若三角形ABC三边分别是abc,面积是S求证a2+b2+c2>=4根号3 S 2022-07-20 △ABC的三边分别是abc,面积S=a2-(b2-c2),则sinA 如题 2011-10-30 已知三角形ABC的三边abc和面积S满足S=a^2-(b-c)^2,,且b+c=8 求1.cosA 2.求S最大值 46 2012-09-28 已知三角形ABC的三边a,b,c和面积S满足S=a2-(b-c)2,求tanA的值 61 2012-08-31 三角形ABC的三边a,b,c和面积满足S=c^2-(a-b)^2,且a+b=2,求面积S的最大值 98 2010-10-19 设a,b,c是三角形ABC的三边,S是三角形的面积。求证:c^2-a^2-b^2+4ab≥4√3s 32 为你推荐: