已知函数f(x)=4-x^2,求f(x^2-2x-3)的单调区间

掩书笑
2010-10-18 · TA获得超过9653个赞
知道大有可为答主
回答量:3340
采纳率:0%
帮助的人:6813万
展开全部
解:
f(x)=4-x^2在(-∞,0]上单调递增,在(0,+∞)单调递减

令g(x)=x^2-2x-3

g(x)>0时x^2-2x-3>0即(x+1)(x-3)>0解得x>3或x<-1

g(x)<0时有-1<x<3

又g(x)在(-∞,1]单调递减,在(1,+∞)单调递增

则f(x^2-2x-3)在(-1,1]U(3, +∞)上单调递增

在(-∞,-1)U(1,3)上单调递减

复合函数同增同减为增函数,一增一减为减函数
风逸灬杰
2010-10-18 · TA获得超过906个赞
知道小有建树答主
回答量:179
采纳率:0%
帮助的人:193万
展开全部
f(u)=4-u^2
递增区间(负无穷,0)递减区间(0,正无穷)
g(x)=(x-1)^2-4=(x-3)(x+1)
(负无穷,-1)时g(x)>0则f(x)递减而g(x)是递减,所以复合后递增;
(-1,0)时g(x)<0则f(x)递增而g(x)是递减,所以复合后递减;
(0,1)时g(x)<0则f(x)递增而g(x)是递减,所以复合后递减;
(1,3)时g(x)<0则f(x)递增而g(x)是递增,所以复合后递增;
(3,正无穷)时g(x)>0则f(x)递减而g(x)是递增,所以复合后递减;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yx208
2010-10-18 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2365
采纳率:66%
帮助的人:2002万
展开全部
f(x)=4-x^2
在(-∞,0)上递增;在(0,+∞)上递减;

f(x^2-2x-3)中,令t=x^2-2x-3>0,则:x>3或x<-1
即:在x>3或x<-1时,t>0,f(t)递减;
故-1<x<3时,t<0,f(t)递增。

综上:x∈(-∞,-1)∪(3,+∞),f(x^2-2x-3)递减;
x∈(-1,3)f(x^2-2x-3)递增。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式