![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
如图,已知AD是三角形ABC的中线,E是AD的中点,BE的延长线交AC于点F。求证:AD=1/2FC
4个回答
展开全部
应该是证明AF=1/2FC 如下
过D作平行与AC直线交BF于G
因E为AD中点即AE=DE
又因DG平行于AF(即AC)则DG/AF=DE/AE=1,即DG=AF
因D为BC中点即BD=1/2BC
又因DG平行于FC(即AC)则DG/FC=BD/BG=1/2,即DG=1/2FC
因AF=DG,DG=1/2FC
所以AF=1/2FC
过D作平行与AC直线交BF于G
因E为AD中点即AE=DE
又因DG平行于AF(即AC)则DG/AF=DE/AE=1,即DG=AF
因D为BC中点即BD=1/2BC
又因DG平行于FC(即AC)则DG/FC=BD/BG=1/2,即DG=1/2FC
因AF=DG,DG=1/2FC
所以AF=1/2FC
展开全部
证明:过D作DM‖AF,交CE于M
在△DME和△AFE中,∠DEM=∠AEF,DE=AE,∠FAE=∠MDE
∴△DME≌△AFE,AF=DM;
∵AD是△ABC的中线
∴D是BC的中点,DM=1/2BF
∴AF=1/2BF
在△DME和△AFE中,∠DEM=∠AEF,DE=AE,∠FAE=∠MDE
∴△DME≌△AFE,AF=DM;
∵AD是△ABC的中线
∴D是BC的中点,DM=1/2BF
∴AF=1/2BF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2016-12-01
展开全部
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:过D作BF的平行线,交AC边于G,如下图所示:
∵D为BC中点,DG∥BF
∴∠CGD=∠CFB
又∵∠C=∠C
∴△CDG∽△CBF
∴CGCF=CDCB=12,即:CG=12CF=FG
又E为AD的中点,BE的延长线交AC于F,DG∥BF
同理可得:△AEF∽△ADG
∴AEAD=AFAG=12,即:AF=12AG=FG
∴AF=FG=GC
∴AFFC=AF2AF=12=1:2
∵D为BC中点,DG∥BF
∴∠CGD=∠CFB
又∵∠C=∠C
∴△CDG∽△CBF
∴CGCF=CDCB=12,即:CG=12CF=FG
又E为AD的中点,BE的延长线交AC于F,DG∥BF
同理可得:△AEF∽△ADG
∴AEAD=AFAG=12,即:AF=12AG=FG
∴AF=FG=GC
∴AFFC=AF2AF=12=1:2
![](http://iknow-zhidao.bdimg.com/static/question-new/widget/value-comment/img/support_10.6efc748.gif?x-bce-process=image/format,f_auto/quality,q_80)
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询