如何用矩阵的秩判别向量组的线性相关性,请举例说明
1个回答
展开全部
把每个向量写成一列,进行初等行变换,化为阶梯形矩阵,如果非零行的行数等于向量的个数,则向量组线性无关,如果 小于向量组的个数,则线性相关.如a=(1,1,0),b=(1,2,1)
则(a,b)=
[1 1
1 2
0 1]
初等行变换之后得
〔1 1
0 1
0 0〕
矩阵的秩为2和向量的个数相等,所以线性无关。
则(a,b)=
[1 1
1 2
0 1]
初等行变换之后得
〔1 1
0 1
0 0〕
矩阵的秩为2和向量的个数相等,所以线性无关。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询